

AN ANOMALOUS SESQUITERPENE FROM *HELICHRYSUM DAVYI*

J. JAKUPOVIC, T. TEETZ and F. BOHLMANN

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F.R.G.

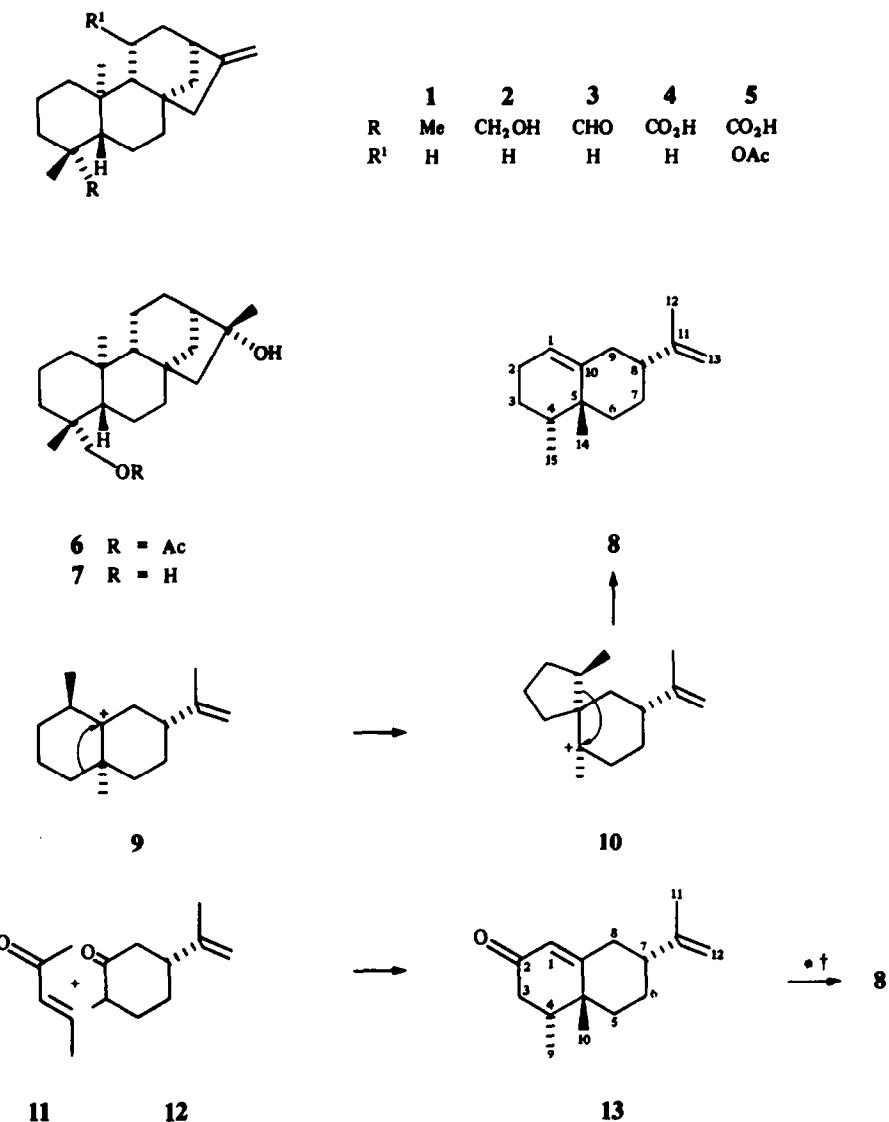
(Revised received 1 November 1986)

Key Word Index—*Helichrysum davyi*; Compositae; sesquiterpene; anomalous carbon skeleton; synthesis.

Abstract—From the roots of *Helichrysum davyi*, in addition to known compounds, a sesquiterpene hydrocarbon with a new carbon skeleton was isolated. Its structure was elucidated by spectroscopic methods and by synthesis.

INTRODUCTION

The roots of the South African *Helichrysum davyi* S. Moore afforded α -humulene, caryophyllene, the ent-kaurene derivatives 1 [1], 2 [2], 3 [2], 4 [3], 5 [4], 6 [5] and its corresponding diol 7 which was identical with the diol obtained by saponification of 6. The structures followed from the ^1H NMR spectra which were identical with those of authentic material. In addition small amounts of the hydrocarbon 8 was isolated.


The structure of 8 followed from its highfield ^1H NMR spectrum (see Experimental). Spin decoupling allowed the assignment of all signals and led to sequences which clearly showed that the isopropenyl group was at C-8, thus excluding the presence of an eremophilane derivative. The stereochemistry was established by NOE difference spectroscopy. Thus clear effects were observed between H-15, H-3 β (4%) and H-6 (5%) as well as between H-14, H-2 β (4%), H-4 (5%), H-7 β (5%) and H-9 β (4%). The couplings of H-8 further indicated an axial orientation of the isopropenyl group. The ^{13}C NMR signals also agreed with the proposed structure. As no sesquiterpene with the same carbon skeleton had been reported previously the synthesis of 8 was undertaken. A suitable starting material was dihydrocarvone. A modified Robinson anellation as reported for dimethyl octalin-2-one [6] was expected to give the desired stereochemistry with *trans*-orientated methyl groups. However, the stereochemistry at C-7 was not easily predictable. Reaction of (+)-dihydrocarvone with 3E-penten-2-one and sodium hydride in DMSO afforded the crystalline ketone 13 in 25% yield (mp 64-65°). ^1H NMR (CDCl_3): δ 5.80 *d* (H-1), 2.19 and 2.76 *dd* (H-3), 1.90 *ddq* (H-4), 1.8-1.95 *m* (H-5, H-6), 2.49 *m* (H-7), 2.52 *dd* and 2.66 *ddd* (H-8), 0.98 *d* (H-9), 1.35 *s* (H-10), 1.72 *br s* (H-11), 4.73 and 4.87 *br s* (H-12) [J (Hz): 1.8 = 2; 3.3' = 16.5; 3.4 = 3.5; 3', 4 = 5; 4, 9 = 7.5; 6, 8' = 2; 7, 8 = 2; 7, 8' = 6; 8, 8' = 16]. The small couplings of H-7 indicated the

desired configuration at this centre. The ketone 13 was transformed by a modified Wolff-Kishner reduction via the semicarbazone [7] to the hydrocarbon 8, colourless oil, $\text{bp}_{0.05}$ 45°, whose spectral data and optical rotation were identical with those of the natural product, whose absolute configuration was thus established.

The biosynthesis of 8 probably proceeds via the intermediate 9 which could rearrange to the skeleton 10 which in turn would give 8 by migration of the other carbon bond. This would be in agreement with the observed stereochemistry.

EXPERIMENTAL

The roots (100 g, voucher 81/255, collected in Transvaal) were extracted with Et_2O -petrol (1:2) and the extract obtained was separated as reported previously [8] by CC and PTLC (Silica gel, PF 254) affording 20 mg 1, 30 mg 2, 50 mg 3, 300 mg 4, 35 mg 5, 15 mg 6, 30 mg 7 and 5 mg 8, colourless oil; MS m/z (rel. int.): 204.188 [M] $^+$ (37) [$\text{C}_{15}\text{H}_{24}$] $^+$ 189 [M - Me] $^+$ (71), 162 [M - C_3H_6 , RDA] $^+$ (100), 161 (90), 147 (51), 133 (56), 119 (97), 107 (76), 105 (79), 93 (68), 91 (76); ^1H NMR (CDCl_3): δ 5.31 (*ddd*, H-1), 2.01 (*m*, H-2 α), 1.88 (*m*, H-2 β), 1.32 (*dddd*, H-3 α), 1.72 (*m*, H-3 β), 1.50 (*ddq*, H-4), 1.60 (*ddd*, H-6 α), 0.98 (*dd*, H-6 β), 1.70 (*m*, H-7), 1.85 (*m*, H-7 β), 2.31 (*m*, H-8), 2.23 (*ddd*, H-9), 2.54 (*dddd*, H-9 β), 1.70 (*br s*, H-12), 4.87 and 4.82 (*br s*, H-13), 1.15 (*s*, H-14), 0.86 (*d*, H-15) [J (Hz): 1.2 α = 1.2 β = 1.9 β = 2.9 β ~ 2; 2 α , 3 α = 2 β , 3 α = 3 α , 4 = 5; 3 α , 3 β = 13; 3 β , 4 = 3; 4, 15 = 7; 6 α , 6 β = 13; 6 α , 7 α = 4; 6 α , 7 β = 12; 7 α , 9 α = 8, 9 α = 2; 8, 9 β = 3; 9 α , 9 β = 14]; ^{13}C NMR (CDCl_3 , C-1-C-15): 120.2 *d*, 29.4 *t*, 35.5 *t*, 40.3 *d*, 37.6 *s*, 26.5 *t*, 22.9 *t*, 38.6 *d*, 24.0 *t*, 140.2 *s*, 147.8 *s*, 25.4 *q*, 108.0 *t*, 15.0 *q*, 22.7 *q*; $[\alpha]_D^{20}$ = -20° (CHCl_3 ; *c* 0.05).

* NaH, DMSO, 3 hr, 20°

† Semicarbazide acetate - EtOH (12 hr reflux) then semicarbazone in toluene (25 hr reflux) with potassium tert-butoxide.

Acknowledgements—We thank Dr. B. de Winter and Mrs. Wellman, Botany Research Institute, Pretoria, for their help during plant collection.

REFERENCES

1. Djerassi, L., Quitt, P., Mosettig, E., Cambie, R. C., Rutledge, P. S. and Briggs, L. H. (1964) *J. Am. Chem. Soc.* **83**, 3720.
2. Hendrick, C. A. and Jefferies, P. R. (1964) *Austr. J. Chem.* **17**, 915.
3. Bohlmann, F. and Rao, B. (1973) *Chem. Ber.* **106**, 814.
4. Bohlmann, F., Zdero, C., Hoffmann, E., Mahanta, P. K. and Dorner, W. (1978) *Phytochemistry* **17**, 1917.
5. Bohlmann, F., Jakupovic, J., Schuster, A., King, R. M. and Robinson, H. (1982) *Phytochemistry* **21**, 2317.
6. Scanio, C. J. V. and Starrett, R. M. (1971) *J. Am. Chem. Soc.* **93**, 1539.
7. Grundon, M. F., Henbest, H. B. and Scott, M. (1963) *J. Chem. Soc.* 1855.
8. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) *Phytochemistry* **23**, 1979.